

Petra® 140

PET (Polyethylene Terephthalate)

Product Description

Petra 140 is a 45% glass reinforced polyethylene terephthalate (PET) injection molding compound offering an increased level of strength, stiffness, high temperature performance, dimensional stability. Excellent resistance to creep under load, and maintains the inherent chemical and electrical properties associated with polyesters.

Applications

Petra 140 is generally recommended for applications such as load bearing structural housings and mechanical components.

PHYSICAL	ASTM Test Method	Property Value
Specific Gravity	D-792	1.70
Mold Shrinkage (1/8" bar, in/in)		0.002
MECHANICAL	ASTM Test Method	Property Value
Tensile Strength, Break, MPa (psi)	D-638	
23C (73F)		180 (26,100)
Elongation, Break, %	D-638	
23C (73F)		3
Flexural Modulus, MPa (psi)	D-790	
-40C (-40F)		14,500 (2,100,000)
23C (73F)		13,100 (1,900,000)
121C (250F)		4,690 (680,000)
Flexural Strength, MPa (psi)	D-790	
-40C (-40F)		370 (53,600)
23C (73F)		285 (41,300)
121C (250F)		110 (16,000)
Rockwell Hardness, R Scale	D-785	116
IMPACT	ASTM Test Method	Property Value
Notched Izod Impact, J/M (ft-lbs/in)	D-256	
23C (73F)		110 (2.1)
THERMAL	ASTM Test Method	Property Value
Melting Point, C(F)	D-3418	245 (473)
Heat Deflection @ 264 psi (1.8 MPa) C(F)	D-648	225 (437)
Coef. of Linear Thermal Expansion, mm/mm C (in/in F)	E-831	0.22 X10-4
ELECTRICAL	ASTM Test Method	Property Value
Volume Resistivity, 1.5 mm	D-257	>1E13

Processing Guidelines

Material Handling

Max. Water content: 0.02%

BASF Corporation
Engineering Plastics
609 Biddle Avenue
Yandotte, MI 48192

To ensure optimum part performance, this product must be dried prior to molding and maintained at a moisture level of less than 0.02%, with a preferred moisture target of less than 0.015%. A dehumidifying hopper dryer mounted on the molding machine and equipped with alternating desiccant beds and air temperature/dew point indicators is recommended. Drying time is 2 - 4 hours at 120 degC (248 degF). Further information concerning safe handling procedures can be obtained from the Material Safety Data Sheet. Alternatively, please contact your BASF representative.

Typical Profile

Melt Temperature 280-300 degC (536-572 degF)
Mold Temperature 100-110 degC (212-230 degF)
Injection and Packing Pressure 35-125 bar (500-1500 psi)

Mold Temperatures

This product can be processed over mold temperatures of 80-120 degC (176-248 degF); however, for optimizing surface appearance, dimensional stability and part performance, mold surface temperatures of 100-110 degC (212-230 degF) are preferred.

Pressures

Injection pressure controls the filling of the part and should be applied for 90% of ram travel. Packing pressure affects the final part and can be used effectively in controlling sink marks and shrinkage. It should be applied and maintained until the gate area is completely frozen off.

Back pressure can be utilized to provide uniform melt consistency and reduce trapped air and gas. Minimal back pressure should be utilized to prevent glass breakage. Recommended to minimize glass fiber breakage.

Fill Rate

Fast fill rates are recommended to ensure uniform melt delivery to the cavity and prevent premature freezing. Surface appearance is directly affected by injection rate.

Note

Although all statements and information in this publication are believed to be accurate and reliable, they are presented gratis and for guidance only, and risks and liability for results obtained by use of the products or application of the suggestions described are assumed by the user. NO WARRANTIES OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, ARE MADE REGARDING PRODUCTS DESCRIBED OR DESIGNS, DATA OR INFORMATION SET FORTH. Statements or suggestions concerning possible use of the products are made without representation or warranty that any such use is free of patent infringement and are not recommendations to infringe any patent. The user should not assume that toxicity data and safety measures are indicated or that other measures may not be required.

BASF Corporation
Engineering Plastics
609 Biddle Avenue
Yandotte, MI 48192

